Estimating the spatial variability of water consumption in the Karkheh river basin, Iran - using MODIS data

Lal P. Muthuwatta, Mobin-ud-Din Ahmad, Tom H.M. Rientjes and Marinus G. Bos

Abstract: Spatially distributed actual evapotranspiration (ETₐ) values were estimated based on satellite data and the Surface Energy Balance System (SEBS) approach for the Karkheh River Basin, Iran. Nineteen cloud free MODIS (Moderate Resolution Imaging Spectroradiometer) images, representing a complete cropping year from November 2002 to October 2003 were acquired and processed. Estimated ETₐ values were verified using sub-catchment scale water balance analysis. The results revealed that during the study period ETₐ was estimated at 16680×10⁶ m³ and that the water balance closure terms at sub-basin scale ranged from 0.6% to 7.2% of precipitation. This implies that water balance is sufficiently understood. Estimated outflow from the basin was 7.8% of precipitation and indicates that water is a very scarce resource in the Karkheh. Rain fed areas consume about 3720×10⁶ m³/year and are mainly located in the sub-catchments of the upper Karkheh while irrigated areas consume 2680×10⁶ m³/year and are mainly located in the lower areas in the basin. Total water consumption by forest is about 2070×10⁶ m³/year, mainly in the middle parts of the basin. The range lands are scattered mainly all over the Upper Karkheh and together with areas in the Lower Karkheh consume about 3360×10⁶ m³/year. ETₐ from other land uses is 4110×10⁶ m³/year, of which ETₐ from open water surfaces is the main contributor. The Karkheh Dam evaporates 80×10⁶ m³/year while wetlands located in the lower area of the basin evaporate 660×10⁶ m³/year. Satellite data along with the SEBS algorithm and geo-statistical techniques are effective to estimate spatial patterns of water consumption and availability. These facilitate the introduction of diverse management interventions to different areas in the basin based on the real ground situation.

Keywords: actual evapotranspiration, SEBS, MODIS, water balance, Karkheh river basin

Introduction

Information on the spatial distribution of actual evapotranspiration (ETₐ) is crucial for water management in river basins. Especially in water scarcity river basins where there is increasing pressure on water resources, a sound knowledge is required on how water is used in order to make better allocation decisions. For example, linking crop yields with related ETₐ can be used to estimate the productivity.
of water. Some areas produce higher crop yields while some other areas produce lower crop yields by consuming the same amount of water. Information on such variations in productivity is important to plan strategies to reallocate water in order to improve productivity (e.g. Teixeira et al., 2008).

Often there is a lack of field data on the actual consumption of water and this hampers judicious management and planning of water resources. In many water resources studies it is practice that ET$_a$ is estimated as a residual to close the water balance. For instance, Domingo et al. (2001) and Loukas et al. (2005) calibrated a catchment scale stream flow model by changing ET$_a$. In these studies, estimations of ET$_a$ cannot be considered reliable since estimated ET$_a$ obscures and compensates for any shortcomings and limitations of the modeling approach (Muthuwatta et al., 2010). Another procedure to estimate field specific ET$_a$ is through reference evapotranspiration (ET$_0$) and crop coefficients (Kc) (see Allen et al., 1998; Bos et al., 2009). More advanced field procedures to estimate ET$_a$ are based on eddy correlation techniques and scintillometer data (see Hemakumara et al., 2003). However, a limitation of these approaches is that the information is obtained only for small areas and estimates of ET$_a$ over larger areas are not ascertained. In this respect, considering effects of spatial and temporal variations of surface characteristics on ET$_a$ cannot be assured (see Ahmad et al., 2006).

The development of remote sensing (RS) sensors and techniques during the last few decades triggered the development of methods to estimate spatially distributed ET$_a$ over large areas. These methods are based on the energy balance approach (Bastiaanssen et al., 1998, Su, 2002) and these models have been used to create a variety of applications in many river basins in the world (Ahmad, 2005; Bastiaanssen and Chandrapala, 2003; Muthuwatta et al., 2010). Among the several ET$_a$ estimation methods, remote sensing methods are regarded as the only technology that can efficiently and economically provide regional and global coverage of actual water consumption by different land cover classes on the ground (Tasumi, 2003). In addition, satellite observations can be repeated over time. These two features allow aggregation of hydrological indicators over large spatial domains for selected time periods. At the same time, freely available satellite images from the internet make the applications of these methods cost effective. This paper presents the application of the Surface Energy Balance Systems (SEBS), using freely available Moderate Resolution Imaging Spectroradiometer (MODIS) images, to compute actual evapotranspiration in the Karkheh River Basin, Iran. This is the first attempt to estimate evapotranspiration using satellite image in the basin.

Study area

The Karkheh River Basin (51,000 km2) is located in the southwestern region of Iran, between 30° to 35° northern latitude and 46° to 49° eastern longitude (Fig. 1). It is one of the most productive river basins in Iran and occupies 9% of the total irrigated area of the country. Also some 10-11% of the country’s wheat production comes from the basin (Marjanizadeh, 2008). Water in the basin is mainly used for agriculture production, domestic supplies, and fish farming but also serves to sustain the environment. For the latter, a major concern is the sustainability of the Hoor-Al-Azim swamp, a Ramsar site located at the Iran-Iraq border. Hydrologically the basin is divided into five sub-basins, Gamasib, Qarasou, Kashkan, Saymareh and south Karkheh (Fig. 1). The first four sub-basins are major tributaries to the main stream of the Karkheh River while Lower Karkheh or South Karkheh is the area south of the Karkheh dam.

The elevation of the basin ranges from less than 10 m above mean sea level in the south to more than 3500 m in the north of the basin. The southern part of the basin receives annual average precipitation of about 150 mm while in the northern part it can reach up to 750 mm. In the Lower and Upper Karkheh, maximum summer temperature goes up to 45°C and 35°C respectively. Class A pan evaporation, which is the sole readily available evaporation data in the basin, ranges from 2000-3600 mm from the North to the South. Precipitation in the Lower Karkheh area is regarded as insufficient to meet crop water requirements and irrigated agriculture largely depends on water from the Karkheh dam and from groundwater resources. Rangelands, rainfed agriculture, forests and irrigated agriculture are the main land uses in the basin. In the upper basin areas both rainfed and irrigated agriculture are practiced while only irrigated agriculture is practiced in the arid climate lower basin. The Karkheh reservoir has a storage capacity of 7500x106 m3 with a live storage capacity of about 4700x106 m3 and has been operational since 2002. The reservoir is designed to irrigate 320,000 ha of agricultural land in the Lower Karkheh. During November 2002 to October 2003 the accumulated dam outflow was measured at 2851x106 m3. The growing competition between the various uses of water is among the major concerns in the basin. In the lower basin, the competition between irrigated agriculture and the wetland ecosystem has led to low water productivity, increasing salinity problems and reduced surface water availability. Under these circumstances, knowledge on spatial and temporal patterns of water consumption is vital for planners and water managers.
Methodology and data
Surface energy balance algorithm.

In this study the Surface Energy Balance System (SEBS) proposed by Su (2002) was used. SEBS has been developed to solve surface energy balance by integrating remote sensing data with in-situ meteorological data. The surface energy balance is given by:

\[R_n = G_0 + H + \lambda E \]

(1)

Where \(R_n \) is the net radiation (Wm\(^{-2}\)), \(G_0 \) is the soil heat flux (Wm\(^{-2}\)), \(H \) is the sensible flux (Wm\(^{-2}\)) and \(\lambda E \) is the latent heat flux (Wm\(^{-2}\)) associated with the transfer of moisture into the atmosphere.

The land surface parameters (surface albedo, emissivity, surface temperature, fractional vegetation cover and leaf area index) for the system are extracted from the reflectance and radiance measurements of the satellite. The other inputs include air pressure, temperature, humidity, and wind speed. The third input are the radiation components derived through parameterization (see, Su, 2002). To determine the evaporative fraction, SEBS uses the energy balance consideration at limiting cases proposed by Menenti and Choudhury (1993). At dry limit, the whole area is assumed as dry. The latent heat (or the evaporation) then becomes zero due to the limitation of soil moisture and the sensible heat flux is at its maximum value. Therefore equation (1) then becomes:

\[H_{dry} = R_n - G_0 \]

(2)

Under the wet limit, the whole area is assumed to be wet and evaporation takes place at its potential rate. At this limit it is reasonable to assume that the sensible heat flux takes its minimum value. Therefore equation (1) could be rewritten as follows.

\[H_{wet} = R_n - G_0 - \lambda E_{wet} \]

(3)

The relative evaporation is defined as:

\[\Lambda_r = \frac{\lambda E}{\lambda E_{wet}} = 1 - \left[\frac{H - H_{wet}}{H_{dry} - H_{wet}} \right] \]

(4)

The evaporative fraction is computed by the following relationship:

\[\Lambda = \frac{\lambda E}{R_n - G_0} = \frac{\lambda E_{wet}}{R_n - G_0} \]

(5)

The net available energy \((R_n - G_0) \) in the above equation may have different time scales. For a time scale of one day or longer, \(G_0 \) can be ignored and the net available energy reduced to net radiation \((R_n) \) (Bastiaanssen et al., 1998).

By assuming that the daily value of the evaporative fraction is approximately equal to the instantaneous value, the daily evaportranspiration is determined as:

\[ET_{24} = \frac{8.64 \times 10^3}{\lambda \rho_w} \Lambda R_{n24} \text{ (mm/day)} \]

(6)

where \(R_{n24} \) (Wm\(^{-2}\)) is the 24 hour averaged net radiation, \(\lambda \) (J Kg\(^{-1}\)) is the latent heat of vaporization, and \(\rho_w \) (Kg m\(^{-3}\)) is the density of water.

This algorithm has been used on a variety of applications, including evaporation estimates in the Taiyuan Basin in China (Jin et al., 2005), Spain Barrax (Su and Jacobs, 2001), estimation of sensible heat flux in the Spanish Tomelloso area (Jia et al., 2003), and for drought monitoring purposes in North West China (Su et al., 2003).

Data used

Meteorological and river discharge data for the study period November 2002 to October 2003 have been collected from organizations and authorities that are responsible for its monitoring (Tab. 1). Daily stream flow data is collected at 4 gauging stations to estimate the out flow from the major sub-basins in the Upper Karkheh. Inflow and outflow volumes of the Karkheh dam were only available from July 2002 onwards. Using the locations of river gauging stations and a Shuttle Radar Topography Mission (SRTM) digital elevation model (acquired from http://srtm.csi.cgiar.org/), the upstream contributing area for each river gauging station was estimated.

Table 1: Meteorological and stream flow data available for Karkheh

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Frequency</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum and Minimum Air Temperature (Celsius)</td>
<td>Daily</td>
<td>Islamic Republic of Iran meteorological organization (IRIMO)</td>
</tr>
<tr>
<td>Relative Humidity (%)</td>
<td>three hourly</td>
<td>IRIMO</td>
</tr>
<tr>
<td>Wind speed (m/s)</td>
<td>three hourly</td>
<td>IRIMO</td>
</tr>
<tr>
<td>Sunshine hours (hours)</td>
<td>daily</td>
<td>IRIMO</td>
</tr>
<tr>
<td>Precipitation (mm)</td>
<td>daily</td>
<td>IRIMO</td>
</tr>
<tr>
<td>Stream flow (m(^3)/day)</td>
<td>daily</td>
<td>Iranian Power Ministry</td>
</tr>
</tbody>
</table>

For estimation of \(ET_a \), 19 cloud free MODIS-TERRA images covering the study area were acquired for the period November 2002 to October 2003 (Tab. 2). Land use was classified using the time series of MODIS-TERRA with bands in the visible, near infrared and thermal infrared areas of the electro magnetic spectrum.

Table 2: Acquisition dates of TERRA-MODIS images from November 2002 to October 2003. (Source: http://ladsweb.nascom.nasa.gov/)

<table>
<thead>
<tr>
<th>Year</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>12</td>
<td>06</td>
<td>15</td>
<td>29</td>
<td>24</td>
<td>05,19</td>
</tr>
<tr>
<td>Year</td>
<td>Jul</td>
<td>Aug</td>
<td>Sep</td>
<td>Oct</td>
<td>Nov</td>
<td>Dec</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>03</td>
</tr>
<tr>
<td>2003</td>
<td>02</td>
<td>02,10,22</td>
<td>07,16,25</td>
<td>06,11,25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Processing of MODIS data

In order to use MODIS data as an input for SEBS, different processing steps have to be followed. For this, Integrated Land and Water Information System (ILWIS) image processing software developed by ITC, The Netherlands is used. The energy balance algorithm used in this study needs broad band surface albedo, emissivity, surface temperature, fractional vegetation cover and leaf area index from satellite data.
Broadband surface albedo, ρ_s, has been calculated from Surface Reflectance using the empirical relation of Liang (2000):

$$
\rho_s = 0.160 \times \alpha_1 + 0.291 \times \alpha_2 + 0.243 \times \alpha_3 + 0.116 \times \alpha_4 + 0.127 \times \alpha_5 + 0.081 \times \alpha_6 - 0.0015
$$

where α_n is the reflectance of band n. This estimated ρ_s is used to calculate net incoming radiation given in equation 8.

$$
R_n = (1 - r_b) \cdot K_T + \varepsilon_s \cdot \varepsilon_a \cdot \sigma \cdot T_s^4 - \varepsilon_s \cdot \sigma \cdot T_a^4
$$

where r_b = the broad band surface albedo (-), K_T = the downward solar radiation (Wm$^{-2}$), ε_a = the emissivity of air (-), ε_s = the surface emissivity (-), σ = the Stefan-Boltzmann constant (Wm$^{-2}$K$^{-4}$), T_a = the air temperature (K) and T_s = the surface temperature (K) measured by a remote sensor.

The surface emissivity has being estimated using following equation proposed by Valor and Caselles (1996):

$$
\varepsilon_s = 0.985 \times f_c + 0.96 \times (1 - f_c) + 4 \times 0.015 \times f_c \times (1 - f_c)
$$

where f_c is the fractional vegetation cover.

The fractional vegetation cover (f_c) is derived from NDVI, using the following equation (Choudhury et al., 1994):

$$
f_c = 1 - \left(\frac{NDVI_{\text{max}} - NDVI}{NDVI_{\text{max}} - NDVI_{\text{min}}} \right)^{0.625}
$$

where NDVI_{min} is the NDVI for bare soil and NDVI_{max} is the NDVI for full vegetation cover.

Land surface temperature was calculated based on the brightness temperature estimated using MODIS bands 31 and 32 and the method proposed by Kerr et al. (1992).

Results

Daily ETa maps were estimated by applying the SEBS algorithm to 19 cloud free MODIS images. Incorporating evaporative fraction maps and average net daily radiation maps with the equation 6, monthly and annual ETa maps were prepared. Figure 2 shows the spatial distribution of annual ETa from November 2002 to October 2003.

The annual ETa for the period November 2002 to October 2003 ranges from 40 mm to 1680 mm. The highest value is found in the Karkheh reservoir and the lowest in the bare land/desert areas downstream of the Karkheh dam. Cropped areas show large spatial variations in the annual ETa. For example, the ETa values associated with the rainfed areas are 396 mm/year and 714 mm/year for irrigated crops. However, there are large variations found within the same land use. In the map, irrigated areas in the upper and lower Karkheh are shown by high ETa values. The large red area in the lower part of the basin shows the low ETa in the desert while the large blue patch in the Lower Karkheh indicates the higher ETa in the Hoor-Al-Azim swamp. To quantify the water consumption by major land uses in the KRB, ETa and classified land use maps based on the time series of MODIS satellite data (Ahmad et al., 2009) are used. Figure 3 presents the annual ETa volumes by major landuse classes in KRB between November 2002 and October 2003.

In KRB irrigated agricultural areas cover about 509700 ha and there about 1389000 ha under rainfed agriculture, this is the reason for the higher total volume of ETa for the rainfed agriculture areas. Further analysis revealed that ETa in different land use classes show large ranges between maximum and minimum values. For instance, some irrigated areas consume less than 300 mm/year of water while some other areas consumes closer to 700 mm/year. Average ETa is highest for the irrigated areas while the lowest values are found in bare land areas. Average ETa per unit land area in rainfed agricultural is significantly lower than that in irrigated areas. This is evident by the yields, as in wheat areas average irrigated yield is about two fold higher than the average yield in rainfed areas (Ahmad et al., 2009). Average ETa associated with the rangelands is 316 mm/year and the maximum value is more than 500 mm/year. This shows some possibilities to expand rainfed agricultural areas into rangelands areas whenever other conditions such as land slope and accessibility is suitable. In that sense, less beneficial ETa from the range lands can be used to produce more crop yield. In this way total production can be improved without developing new water resources. This is very important for Karkheh River Basin as the basin already experiences water scarce conditions while the demand for food are rising due to the increasing population.

Further, the quantitative information on ETa is important to identify the areas where water stress limits the crop production and also the crop areas that consume more water than the recommended values. Figure 4 presents the spatial variation of ETa in the Gamasiab
sub-basin in upper Karkheh. In Figure 5, the areas under different ETa intervals are presented.

Land use classes in the Gamasiab sub-basin include irrigated agricultural lands, rain fed agricultural lands, forest areas, orchards and bare lands. Figure 4 shows the 1 km² pixel scale distribution of ETa over the sub-basin and is ranging from less than 200 mm/year to more than 600 mm/year. Comparing the ETa map with the landuse map of the sub-basin reveal that high values of ETa are found in the irrigated areas and low values are from bare land areas. In most of the rainfed agricultural areas in the sub-basin the ETa is between 200 to 350 mm/year. The ETa map (Fig. 4) is classified into different intervals and the land area under each ETa interval is estimated (Fig. 5). ETa associated with the majority of the areas is between 200 and 400 mm/year. Further, using the landuse map, the ETa was extracted for irrigated wheat areas. Wheat season in the Upper Karkheh is from November to July. Wheat areas under different seasonal ETa intervals and the associated yield values are presented in Figure 6. To estimate the average wheat yields in different ETa intervals, data (Ahmad et al., 2009) from a field survey (Ahmad et al., 2009) is used.

As shown in Figure 6, about 70% of the areas are in the ETa interval of 250 to 450 mm/season. Highest reported yield is 5800 kg/ha and is found in the ETa interval 350 to 400 mm/season. Thereafter, the yield values fluctuate closer to 5800 kg/ha. Therefore, the optimum ETa interval for the highest wheat yield could be considered as 350 to 400 mm/season. This indicates that there are about 29100 ha of wheat area consuming water less than what is sufficient to maximize the yield, while another 26600 ha of wheat lands consume more water than the sufficient amount. This indicates that by reallocating water from high ETa areas to low ETa areas wheat production can be improved.
Water Balance

The sub-basin scale annual water balance is computed using Equation 11 and values are presented in Tab. 3. Interpolated precipitation data (Muthuwatta et al., 2010), satellite based ET_a and observed stream flow data were used. For each sub-basin mean values of ET_a and precipitation are defined by dividing the sum of pixel values by the number of pixels. These values were converted into volume by multiplication with sub-basin areas to allow volumetric assessments.

\[
P + Q_{in} + G_{in} - ET_a - Q_{out} - G_{out} = \Delta S
\]

(11)

where \(P \) is the precipitation, \(Q_{in} \) is the surface water inflow, \(G_{in} \) is the groundwater inflow, \(ET_a \) is the actual evapotranspiration, \(Q_{out} \) is the surface water outflow, \(G_{out} \) is the groundwater outflow, and \(\Delta S \) is the storage change in ground water, surface water and soil water during the time interval considered. It is assumed that change in groundwater storage can be negligible as the water balance is solved for a full hydrological year.

During the cropping year November 2002 and October 2003 precipitation was 18507x10^6 m^3 while ET_a was 16680x10^6 m^3 water volume increase in the Karkheh reservoir during the same period was 368x10^6 m^3. Annual water balance was estimated for the whole KRB based on precipitation, ET_a and the volume change in the reservoir by assuming that during one cropping year storage changes in groundwater is negligible. The residual term of the water balance was 1459x10^6 m^3, which is 7.8% of the precipitation. For the Upper Karkheh (the area above the Karkheh dam) the water balance residual term was 2.9% relative to the annual precipitation in that area. Further, the sub-basin scale water balance residual terms ranged from 0.6% to 7.2% of the precipitation. This implies that water balance is sufficiently understood and it indirectly validates the ET_a.
A satellite based energy balance approach and geo-statistical techniques have shown to be effective in estimating spatial patterns of water consumption. We hypothesize that spatially distributed information produced in this study could be used in various applications in the field of water management. For example (1) spatial patterns of ETa over the irrigated areas could be used to identify the areas that make water allocation decisions among different stakeholders, including the Hawr-Al-Azim swamp, a Ramsar site. In addition, information on water use by different land use classes could be useful to carry out basin and sub-catchment scale water accounting that requires depleted water in different categories. Satellite data along with the SEBS algorithm are useful to estimate spatial patterns of water consumption. In addition the pixel based spatially distributed information derived in this study could be used to identify the areas that receive less water. These facilitate the introduction of different management interventions to different areas in the basin based on the real ground situation.

For the Upper Karkheh the residual term in the water balance is 2.9% when normalized to the precipitation. Since there are no measured discharges of inflow in the swamp, closure of the water balance could not be established for the Lower Karkheh and thus for the entire basin. For the whole basin, however, the difference between precipitation and ETa was 1825x10^6 m^3 while the water storage increase in the reservoir was 368x10^6 m^3 for the period of the study. Therefore, the unaccountable volume of water was 1457x10^6 m^3, 7.8% of the precipitation. This is the maximum possible outflow from the basin for the study period but presumably the outflow will be lower since recharge to the ground water system occurs. This implies that the basin is a very water scarce basin. In this respect it must be noted that it is important to maintain the flow into the swamp to guarantee sustainability of the wetland ecosystem.

Therefore we conclude that for the Karkheh basin the most viable option to increase agricultural production is to improve water productivity rather than to focus on the development of additional water resources. Information on the relationship between ETa and the related crop yields (presented in Fig. 6) are especially important as it shows the areas that consumes more than sufficient water. Reallocation of surplus water from these areas to water deficit areas it is possible to maximize the production by same available water resources. This strategy will be a useful one in a basin such as Karkheh where opportunities to develop additional water resources are slim.
receive too little water; (2) information on water use by different land uses could serve to assess effects of land use changes on hydrology; and (3) ETa as an indicator of water consumption for various crops could be used to assess water productivity in agricultural areas. Furthermore, results from this study facilitate the introduction of management interventions to different areas in the basin based on the actual catchment conditions.

Acknowledgment: The authors would like to acknowledge the valuable help provided by the Karkheh Basin Focal Project team members, especially Mr. Ilyas Masih, Dr. Hugh Turrall and Mr. Poolad Karimi. Special thanks to the Iranian Meteorological Organization and the Energy Ministry of Iran for providing data for the study. This study was jointly financed by the International Water Management Institute (IWMI), the International Institute for Geo-Information Science and Earth Observation (ITC) and the Challenge Program of Water and Food (CPWF) for which their donors are acknowledged.

References

Marjanizadeh S. (2008) - Developing a “best case scenario” for Karkheh River Basin management (2025 horizon); a case study from Karkheh River Basin, Iran. Ph.D. thesis, University of Natural Resources and Applied Life Sciences, Vienna

