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Abstract: One of the characteristics of hydroclimatic variables 
is its variability, understanding this as a measure of the dispersion 
of the samples. The most universally measures used to analyze the 
variability of hydroclimatic variables are the variance, standard de-
viation, range and, with certain limitations, the coefficient of vari-
ability (undefined when the average is close to zero).

The aim of this paper is to attempt to exploit the entropy (as has 
been defined by Shannon in 1948 as a measure of disorder) of the 
probability distribution as a measure of variability, associating with 
other measures of the distribution characteristics of variables (such 
as skewness) and various indicators of non-stationary.

Using Monte Carlo methods discrete time series have been gen-
erated, both stationary and with different types of non-stationary 
(white noise with hidden fluctuations and trends), drawn from nor-
mal and non-normal populations.

The variations of the entropy of all samples were analyzed, in or-
der to relate them with different statistics (variability, skewness) and 
with different parameters used in the generation and analysis (linear 
trends wavelengths, lengths class intervals).

Once found the sought relationships, they are used as patterns 
in the entropy analysis of real time series of hydroclimatic vari-
ables such as precipitation with different levels of aggregation. 
The joint entropy of random variables can also be analyzed, as 
well as areal distribution.
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Riassunto: Una delle caratteristiche delle variabili idroclimatiche 
è la loro variabilità, intendendo ciò come la misura della dispersione 
dei dati. I metodi matematici più utilizzati per analizzare la variabilità 
delle variabili idroclimatiche sono la varianza, la deviazione standard, 
l'analisi della gamma e, con alcune limitazioni, il coefficiente di vari-
abilità (non definito quando la media è prossima allo zero).

Scopo di questo lavoro è di tentare di scoprire l'entropia (come è 
stata definita da Shannon nel 1948 come misura del disordine) della 
distribuzione della probabilità come misura della variabilità, in as-
sociazione con altre misure della distribuzione caratteristica delle 
variabili (intesa come asimmetria) e con l'uso di vari indicatori di in-
stabilità. Attraverso l'uso di metodi Monte Carlo sono state generate 
serie discretizzate sul tempo sia su dati stazionari che su dati non-
stazionari (rumore bianco con tendenze e fluttuazioni nascoste), trac-
ciate per popolazioni normali e non. È stata analizzata la variazione 
dell'entropia per tutti i campioni al fine di porli in relazione con dif-
ferenti statistiche (variabilità, asimmetria) e con differenti parametri 
utilizzati nella generazione e nell'analisi (tendenze lineari sulle lung-
hezze d'onda, classi di intervalli di lunghezze).

Una volta trovate le relazioni cercate, queste sono state utilizzate 
come modelli nell'analisi dell'entropia di serie in tempo reale delle 
variabili idroclimatiche come le precipitazioni con differenti livelli di 
aggregazione. Può essere anche analizzata l'entropia congiunta delle 
variabili casuali, così come la loro distribuzione areale.
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Introduction

One of the characteristics of hydroclimatic variables is its variabil-
ity, understanding this as a measure of the dispersion of the samples. 
(Castañeda E. and Barros V., 1994), (Penalba O. and Vargas W., 
2001).

If what is analyzed is a hydroclimatic time series with samples 
from a given site, the variability is associated somehow with the sta-
tionary and level of aggregation, whereas if what is observed is a 
random variable distributed in the space, its variability is related to 
other parameters such as topography, the type of events that generate 
the variable (in the case of precipitation, for example, it may be con-
vective phenomena, frontal, orographic), the patterns of the general 
atmospheric, the seasonality of the variable and, among other things, 
the level of aggregation.

If what is studied is the variability of time series of spatially distrib-
uted variables, then a description of the variability in time(in sample 
points) is needed and then all estimators will be associated in a spa-
tial, geographic interpretation, based on geostatistical procedures, al-
lowing areal definition, globalizing the statistical analysis.

The most universally measures used to analyze the variability of 
hydroclimatic variables are the variance, standard deviation, range 
and, with certain limitations, the coefficient of variability (undefined 
when the average is close to zero).

Hydroclimatic systems are highly complex, both spatially and tem-
porally. They are grounded in an interconnected dynamic network, 
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strongly interdependent, and may be characterized as the “output” of 
chaotic systems with nonlinear dynamics. The variability provides 
valuable information.

Entropy as a concept was developed by Clausius (1850) in the nine-
teenth century, when trying to understand the machines behavior He 
defined the entropy as a measure of energy that can be used to perform 
work on a given system and postulated that this will always increase 
over time in an isolated system.

Although this definition is widely used in physics and chemis-
try, there is another definition, proposed by Boltzmann (Boltzmann 
L.1872) also in the nineteenth century, which gives a more intuitive 
concept. The usual presentation of entropy as “disorder” comes from 
the Boltzmann formulation. This definition said that entropy is the 
number of microscopic states compatible with a macroscopic state. 
As the entropy of Clausius, Boltzmann’s also increases with time.

There is yet another definition of entropy does not seem to be relat-
ed to physical entropy, but it is. It’s called Shannon entropy (Shannon 
C.E., 1948). The Shannon entropy is a mathematical concept; it is a 
measure of information in a system and, therefore, is measured in bits.

This definition may seem so far from physics, but in fact the con-
cept of physical entropy is very close to the information entropy. For 
example, if a gas is contained in a large volume, randomness, and 
therefore, uncertainty in the position of each individual molecule is 
much larger. So, to specify the position of each requires much more 
information than the one required for a smaller volume.

The relationship between entropy and information is a crucial step 
in the process of analyzing the variability (or disorder) of random 
variables.

The aim of this paper is to attempt to exploit the entropy (as has 
been defined by Shannon in 1948 as a measure of disorder) of the 
probability distribution as a measure of variability, associating with 
other measures of the distribution characteristics of variables (such as 
skewness) and various indicators of non-stationary.

Method

For the development of this study open source software, free and 
freely available (Gnumeric) was used. In this way, the designed ex-
periments can be reproduced in any usable computer equipment.

Using Monte Carlo methods discrete time series have been gener-
ated, both stationary and with different types of non-stationary (white 
noise with hidden fluctuations and trends), drawn from normal and 
non-normal populations.

The variations of the entropy of all samples were analyzed, in order 
to relate them with different statistics (variability, skewness) and with 
different parameters used in the generation and analysis (linear trends 
wavelengths, lengths class intervals or bins).

Analyzed cases:

Case 1: Series drawn from a uniformly distributed population

In this case different histograms generated descriptive of the sam-
ple have been prepared by varying the binning. In this way as many 
histograms as proposed bins were obtained.

The histogram is representative of the probability distribution and 
the entropy associated with it was estimated directly from each his-
togram.

A sample of 10000 values ​​uniformly distributed in the interval [0, 
10000] was generated. Then it was described with 50 histograms each 
with a different number of intervals (1 to 50). This is shown in Fig. 1.

For each histogram interval, entropy calculated with the expression 
given by equation (1). 

2lni i iH p p= − 	
(1)

the sample entropy, expressed in bits was estimated by aggregation 
of the equation (1):
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H: sample entropy
pi = Probability of each interval, estimated thru the relative fre-
quency;
ln 2 = binary logarithm

This can be seen partially in Tab. 1:

From the above process graph of the relationship between the en-
tropy of the sample and the number of intervals was constructed.

Thus a relationship between the bin or class width (or number of 
classes used) and entropy of the analyzed sample for this variable 
could be achieved.

Fig. 1 – Generated sample histograms

Fig. 2 - Relationship between the sample entropy and the number of intervals



3

AQUA mundi (2012) - Am05038: 001 - 008 DOI 10.4409/Am-038-12-0038

For each interval of each and every one of the entropy histograms 
according to Equation (1) was estimated, and was added according to 
Equation (2) to finally obtain the entropy of the sample.

This can be seen partially in Table 2:

This leads to the conclusion that the entropy is not a function of 
the variability of the sample (and, therefore, of the variance) if the 
number of class intervals that attempt to describe the samples remains 
constant. That is, if the samples are analyzed independently, without 
maintaining the characteristics of the analysis, the variations of en-
tropy will not be found.  

Case 2: Series drawn from normal populations with different co-
efficients of variation and described with the same number of 
classes.

Keeping constant mean and varying standard deviation, 50 samples 
from normal populations with a wide range of coefficients of variabil-
ity (between 1 and 50) were generated, but keeping the same number 
of class intervals (20 intervals). It should be noted that in this case 
what remains constant is the number of classes and not its width.

Number of intervals of the histogram
1 2 3 4 5 … 48 49 50
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0,0000 0,5007 0,5288 0,4996 0,4696 … 0,4080 0,3770 0,3556
  0,4992 0,5284 0,4994 0,4579 … 0,3983 0,3718 0,3552
  0,5275 0,5035 0,4686 … 0,3952 0,3790 0,3518
  0,4971 0,4658 … 0,4078 0,3693 0,3460
  … … … … …
  … … … …
  … … … …
  … 0,1094 0,1199 0,1107
  … 0,1077 0,1145
  … 0,1073

Entropy (H) 0,0000 0,9999 1,5848 1,9998 2,3213 … 5,5803 5,6112 5,6396

Tab. 1: Estimation of the histogram entropy

Tab. 2

Fig. 3 - Histograms of the generated sample.

Fig. 4 - Relationship between the entropy of the sample, the number of inter-
vals and the variability.

Coefficient of Variation
1 2 3 4 5 … 48 49 50

E
nt

ro
py

 o
f e
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in
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 H
i 0,0024 0,0035 0,0013 0,0045 0,0073 … 0,0082 0,0064 0,0073

0,0024 0,0082 0,0064 0,0132 0,0148 … 0,0132 0,0099 0,0099
0,0091 0,0237 0,0108 0,0258 0,0331 … 0,0272 0,0237 0,0344
0,0186 0,0643 0,0344 0,0611 0,0674 … 0,0590 0,0518 0,0690

  … … … …
  … 0,0054 0,0054 0,0024

Entropy (H) 3,3605 3,3831 3,4347 3,4994 3,5228 … 3,5366 3,5040 3,4434 



4

DOI 10.4409/Am-038-12-0038 AQUA mundi (2012) - Am05038: 001 - 008

For each interval of each and every one of the histogram entropy 
was estimated by Eq. (1), and summed by Eq. (2) to finally obtain the 
entropy of the sample.

This leads to the conclusion that the entropy itself is a function 
of the sample variability (and thus of the standard deviation) if the 
class width used to describe the samples remains constant. That is, if 
the samples are analyzed keeping constant the characteristics of the 
analysis (in this case, the class width), variations of entropy are not 
only able to detect, but are a direct function of the coefficient of vari-
ability, possibly with a pattern behavior and therefore a criterion or 
comparison of samples based on their entropy.

This can be seen in Figure 5, which describes the behavior of the 
entropy of the samples generated according to the standard deviation.

Case 4: Series drawn from Gamma distributed population, with 
different coefficients of skewness

The coefficient of skewness of the two parameters Gamma proba-
bility distribution is related to the shape parameter of the distribution, 
making it possible to extract samples from populations with different 
skewness Gamma-distributed variables simply by varying the shape 
parameter.

The Gamma density probability function is:

( )
1

( )

x

x ef x
α β

αβ α

−
−

=
Γ

	

(3)

The skewness is a function of the shape parameter 1
2γ
α

= .

Then, setting the skewness (for the analyzed example, between 6 
and 0.5) is possible to obtain different values ​​of the shape parameter.

Once samples have been generated, and using the same width for 

Case 3: Series drawn from normal populations with different co-
efficients of variability, described by uniform class widths

51 ad-hoc generated samples were used, with coefficients of varia-
tion ranging between 1 and 6. Being the mean equal to 10, standard 
deviations ranged between 10 and 60.

Then, each one of the synthetic samples was ranked through a his-
togram that kept the same width class in all cases.

The aim was to establish a relationship between entropy and the co-
efficient of variation, varying the number of classes so that the width 
class remains constant for each histogram.

Fig. 5 - Histograms of the generated sample

Fig. 6 - Relationship between entropy and sample standard deviation for class 
width constant.

Fig. 7 – Histogram of the generated gamma samples

Fig. 8 – Relationship between skewness and entropy

each class and the same standard deviation, a relationship between 
entropy and the skewness of the samples was derived.

In Fig. 6 some histograms of the generated variables histograms are 
shown, in which, of course, can be seen that the distribution is close to 
normal as the skewness decreases.

From each of these samples entropy was estimated and associated 
with skewness
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Fig. 9 – Time series with different correlation coefficients

Case 5: Series drawn from normal populations, autocorrelated, 
with different coefficients of first order autocorrelation

Keeping the variability of each sample, and by varying he coef-
ficient of first order autocorrelation, different time series using the 
methodology of Box & Jenkins was simulated. The time series gen-
erating equation is

( ) t tB z aφ =% 	 (5)

where:

1

1

1 1

( ) first order autoregressive operator = 1
backward operator, 

z
white noise (0, )

first order autocorrelation coefficient

t t

t t

t a

B B
B Bz z

z z
a N

φ φ

σ
φ r

−

= −
= =
= −
=
= =

%
:

To compose the different time series, a unique series of “white 
noise” was generated, and the autocorrelation coefficient fluctuate 
between -0.99 and +0.99, thereby covering all the possible range of 
variation.

The following chart shows the first 100 values ​​of the first three and 
last three series generated with autocorrelations of 0.99, 0.95, 0.90,-
0.90, -0.95, -0.99, plus one with an intermediate value (r1=0.5)

Then a histogram (Fig.10), descriptive of each sample, was pre-
pared, and the entropy of each of them was estimated at constant 
width classes. This will attempt to establish a relationship between 
entropy and auto-dependence-or “memory” – of the time series.

In Figure 9 some histograms of the samples generated with the 
above characteristics can be observed.

Fig. 10 – Histograms of the synthetic autocorrelated samples)
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10000 mean of the series
2000 amplitude
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Once calculated the histograms, the entropy of each sample was 
estimated. This made it possible to relate the entropy with the auto-
dependence. Evidence of this is the figure 11

As shown, the entropy is independent of the memory of the series 
(or its autocorrelation)

1 2
2sint t

xy a a aπ
λ

= + +

Fig. 11 – Relationship between entropy and the autocorrelation coefficient)

Fig. 12 – Three time series generated with different trends

Fig. 13 – Histograms of series generated with different trends

Fig. 14 – Variation of entropy with a linear trend

Case 6-a: Time series with two added components (a linear 
trend plus a normally distributed variable)

This is the first case of non-stationary analyzed. The samples 
are drawn from populations that show a linear non-stationary, plus 
a “white noise”. This would imply that a deterministic linear pro-
cess adds a homoscedastic stochastic process, which resulted in ho-
moscedasticity non-stationary samples. In nature is not easy to find 
heteroscedastic variables, unless the case - for example - harmonic 
variables influenced by the phenomenon of resonance.

The entropy of samples from these populations was estimated. The 
entropy of each of these samples was attempted to estimate, where 
what remains constant is the “white noise” and the width of each his-
togram class, and what varies is the slope of the line that sets the trend.

Some of the histograms from which the entropy is estimated can be 
seen in the figure below.

It can be seen that the histograms range from a normal one, corre-
sponding to a trend equal to 0, to a nearly uniform, representative of 
the steepest series. This is logical, since that increasing the trend, the 
noise are becoming less representative.

The entropy, however, suffers a reverse process: the larger trend, 
higher entropy. This relationship can be seen in the figure below:

Case 6-b: Time series with two added components (a sine wave 
plus a normally distributed variable)

This is the second non-stationary case analyzed in this one the 
samples are drawn from populations composed of a deterministic 
component (sine or cosine wave) and a random one (white noise). 
This is a very common case where the variables being analyzed are 
hydroclimatic ones, most of which show seasonal variations that can 
be represented often by waves.

The equation from which the samples were generated was the fol-
lowing:

	
(6)



7

AQUA mundi (2012) - Am05038: 001 - 008 DOI 10.4409/Am-038-12-0038

Fig. 15 – Generated time series

Fig. 16 – Histograms representing the series

Fig. 16 – Relation between the entropy of a series and its wavelength

The entropy of these samples has been evaluated with constant 
random component and varying the wave length of the harmonic 
component, starting from the Nyquist frequency to a reasonably high 
frequency in relation with the size of the sample. In all cases also 
remained constant the class width of the histograms from which the 
entropy was calculated.

Then, from each sample, histograms were prepared and the entropy 
of each one was evaluated, being constant the class width.

The following graph shows some of the resulting histograms.

The entropy of each partition proposed was obtained, and the rela-
tionship of each with the lengths of the waves of the generated vari-
ables was accomplished as well. This can be seen in the Figure 17.

As seen in this case, in which a deterministic component (sine 
wave) was added, the entropy remains unchanged. This relationship 
is one that can be seen in the Figure 17.

Results and Conclusions
The tables and graphs that are displayed throughout the work are 

shown how the entropy (a measure of the information or disorder) 
varies according to different characteristics of the samples.

It can be seen, for example, that the entropy is strongly dependent 
on the interval class width that produces a histogram representative of 
the sample, which - apparently -would introduce a subjective factor, 
unwanted, in its calculation. As a direct consequence, and in order 
to be able to have comparable results, is concluded that must set the 
same class interval to analyze any variable geographically distrib-
uted, of whatever the rank, maxima and minima are. For example, 
if the entropy of precipitation fields over a wide area is analyzed; all 
samples should be classified according to a common histogram.

It also can be observed that, contrary to what intuitively is thought, 
highly dependent samples generated by first order autoregressive 
schemes do not present lower entropy. That is, the entropy as a mea-
sure of disorder, in this case, is useful only if accompanied by another 
number, such as the autocorrelation coefficient of first order, or the 
covariance of the sample.

It can be seen that the entropy is highly dependent on the skewness 
of the samples. The greater is the skewness, the smaller is the entropy. 
This has been verified through Gamma-distributed variables, com-
mon in the universe of hydroclimatic variables.

The cases discussed in the non-stationary variables are striking. 
When introduced nonstationarity is a linear trend, disorder (entropy) 
increases as the series is seemingly more organized (as he slope is 
more significant), whereas when introduced nonstationarity is a peri-
odic variable, the entropy is independent of frequency or frequency 
remains constant whatever the wavelength was.

Once the sought relationships established, they will be used as stan-
dards in the analysis of the entropy of real hydroclimatic time series 
hydroclimatic, such as precipitation with different levels of aggrega-
tion. The joint entropy of random variables and its areal distribution 
can be analyzed.

Throughout the work can be seen that the exploration of the entropy 
of synthetic series as indicative of the variability and its relationship 
and / or dependence on other features (such as skewness, nonstation-
arity, auto-dependence, type of distribution) opens pathways which 
can be very useful for characterizing real random variables.
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